Wenn #f (x) = sqrt (1 + x) # und #g (x) = (3x ^ 2) / (x ^ 2 + 1) # ist, was ist dann #g [f (x)] #?

Antworten:

Antwort ist:

#g [f (x)] = 3 (1 + x) / (2 + x) #

Erläuterung:

#f (x) = sqrt (1 + x) #

#g (x) = (3x ^ 2) / (x ^ 2 + 1) #

Zum #g [f (x)] # Ersatz #f (x) # anstatt # x # in dem #g (x) # Funktion:

#g [f (x)] = (3sqrt (1 + x) ^ 2) / (sqrt (1 + x) ^ 2 + 1) #

#g [f (x)] = (3 (1 + x)) / ((1 + x) +1) #

#g [f (x)] = 3 (1 + x) / (1 + x + 1) #

#g [f (x)] = 3 (1 + x) / (2 + x) #